基础论坛:Designing Semiconductor Materials for Photo-electrochemical Energy Conversion

文:基础与前沿研究院 图:基础与前沿研究院 / 来源:基础与前沿研究院 / 2018-12-25 / 点击量:2891

  由基础与前沿研究院主办的“基础论坛”第150期邀请到澳大利亚昆士兰大学化工学院王连洲教授来校作学术交流。具体安排如下,欢迎师生们参加。

  一、题 目:Designing Semiconductor Materials for Photo-electrochemical Energy Conversion

  二、时 间:2018年12月28日(周五)14:00

  三、地 点: 沙河校区通信楼818会议室

王连洲.jpg

  四、主讲人简介

  王连洲,现为澳大利亚昆士兰大学化工学院终身教授,纳米材料研究中心主任,澳洲基金委未来学者。主要从事半导体纳米材料的合成及其在清洁能源领域的应用,其团队最近创造了新型量子点太阳能电池转换效率16.6%的新世界记录。先后在诸多国际期刊发表论文350多篇,撰写专著4章节12部,申请专利13项,作国际会议大会或邀请学术报告100余次,论文被引用17,000余次,H因子为70。近年作为主要负责人先后承担或参与了澳大利亚基金委、澳洲科学院、澳洲协调创新中心以及工业界等40余项竞争性研究项目,总金额超过2500万澳元。先后获得澳洲基金委女王伊丽莎白学者和未来学者称号,昆士兰大学优秀研究奖和优秀研究生导师奖,澳洲寻找未来之星奖,入选澳洲基金委工程技术领域会评专家(College of Experts)和英国皇家化学会会士。 

  五、报告摘要

  Semiconducting materials hold the key for efficient photocatalytic and photoelectrochemical water splitting. In this talk, we will give a brief overview of our recent progresses in designing semiconductor metal oxides materials for photoelectrochemical energy conversion including photocatalytic solar fuel generation. In more details, we have been focusing the following a few aspects; 1) band-gap engineering of layered semiconductor compounds including layered titanate, tantalate and niobate-based metal oxide compounds for visible light phtocatalysis, and 2) two-dimensional nanosheets/nanoplates of TiO2, Fe2O3, WO3, BiVO4 as building blocks for new photoelectrode design, and 3) the combination of a high performance photoelectrodes with new generation perovskite solar cells can lead to unassisted solar driven water splitting process with solar-to-hydrogen conversion efficiency of >6.5%.1-6  The resultant material systems exhibited efficient visible light photocatalytic performance and improved power conversion efficiency in solar energy, which underpin important solar-energy conversion applications including solar fuel generation, and low-cost high efficiency solar cells.

  References:

  1.Chem. Rev.,2014,114, pp 9455–9486

  2.Adv. Mater.,2016,DOI: 10.1002/adma.201601525.

  3.Angew Chem,2017,2017, 56, 8500-8504.

  4.Adv. Mater.,2017,DOI: 10.1002/adma.201703824.

  5.Adv. Mater.,2018,doi:10.1002/adma.201705666.

  6.Adv. Mater.,2018,doi:10.1002/adma.201800486.  

  7.Angew.Chem,2018,doi/10.1002/anie.201810583


                        基础与前沿研究院

                        2018年12月24日


编辑:罗莎  / 审核:罗莎  / 发布者:陈伟